The nature of bone and its fossilization. Taphonomy for the study of the conservation status of archaeological and paleontological bone
DOI:
https://doi.org/10.37558/gec.v20i1.1001Keywords:
archaeological bone, fossil, conservation, collagen, bioapatite, Pleistocene, TaphonomyAbstract
Bone is a frequent material in cultural heritage collections, and especially on archaeological and paleontological collections. A correct diagnosis of the state of conservation is crucial, however, the characteristic of these bones and the kind of transformations during the burial time is not well extended in conservation studies. The lack of works leads to expose the bone as an exclusively organic material, but this interpretation occasionally is not quite accurate. Taphonomy is the discipline that describes the agents, processes, and effects related to the formation of an archaeological or paleontological bone until its discovery. All these processes transform the physiochemical properties of these bones which is crucial for the study of their conservation and restoration. This work describes several characteristics of the bones, the modifying factors, and decaying mechanisms with the aim of exposing an accurate approach of nature, state of conservation which allows adapting the conservation treatments on these materials..
Downloads
References
ANDREW, K. (1996). «A summary of the care and preventative conservation of sub‐fossil bone for the non‐specialist or pleistocene problems ‐The sub‐fossil scenario», The biology curator, 5, pp. 24-28.
BARRÓN-ORTIZ, C. et al. (2018). «Conservation of subfossil bones from a lacustrine setting: Uncontrolled and controlled drying of late quaternary vertebrate remains from cold lake, western Canada», Collection Forum, 32(1), pp. 1-13. https://doi.org/10.14351/0831-4985-32.1.1 DOI: https://doi.org/10.14351/0831-4985-32.1.1
BEHRENSMEYER, A. K. (1978). «Taphonomic and ecologic information from bone weathering», Paleobiology, 4(2), pp. 150-162. https://doi.org/10.2307/2400283. DOI: https://doi.org/10.1017/S0094837300005820
BEHRENSMEYER, A. K. (2020). «Taphonomy», Reference Module in Earth Systems and Environmental Sciences, pp. 1-11. https://doi.org/10.1016/b978-0-08-102908-4.00120-x. DOI: https://doi.org/10.1016/B978-0-08-102908-4.00120-X
BERNA, F.; MATTHEWS, A. ; WEINER, S. (2004). «Solubilities of bone mineral from archaeological sites: The recrystallization window», Journal of Archaeological Science, 31(7), pp. 867-882. https://doi.org/10.1016/j.jas.2003.12.003. DOI: https://doi.org/10.1016/j.jas.2003.12.003
BOETHIUS, A. et al. (2020). «Human encroachment, climate change and the loss of our archaeological organic cultural heritage: Accelerated bone deterioration at Ageröd, a revisited Scandinavian Mesolithic key-site in despair», PLoS ONE, 15(7), pp. 1-23. https://doi.org/10.1371/journal.pone.0236105. DOI: https://doi.org/10.1371/journal.pone.0236105
BOUZAS ABAD, A.; LABORDE MARQUEZE, A. (2002). «La degradación del hueso», Monte Buciero, 9, pp. 267-275.
CÁCERES, I. (2002). Tafonomía de yacimientos antrópicos en karst. Complejo Galería (Sierra de Atapuerca, Burgos), Vanguard Cave (Gibraltar) y Abric Romaní (Capellades, Barcelona). Universidad Rovira i Virgili.
CHILD, A. M. (1995). «Towards and understanding of the microbial decomposition of archaeological bone in the burial environment», Journal of Archaeological Science, 22(2), pp. 165-174. https://doi.org/10.1006/jasc.1995.0018. DOI: https://doi.org/10.1006/jasc.1995.0018
COLLINS, M J. et al. (2002). «Bone Diagenesis: implications for heritage management», en 9th ICAZ Conference, pp. 124-132.
COLLINS, M. J. et al. (2002). «The survival of organic matter in bone: A review», Archaeometry, 44(3), pp. 383-394. https://doi.org/10.1111/1475-4754.t01-1-00071. DOI: https://doi.org/10.1111/1475-4754.t01-1-00071
CRONYN, J. M. (2003). Elements of Archaeological Conservation. Routledge. London. https://doi.org/10.2307/1506325. DOI: https://doi.org/10.4324/9780203169223
CURREY, J. (2002). «The structure of bone tissue», en Bones: structure and mechanics. Princeton, pp. 224-225. https://doi.org/ 10.1515/9781400849505. DOI: https://doi.org/10.1515/9781400849505
DAL SASSO, G. et al. (2016). «Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V., 463, pp. 168-179. https://doi.org/10.1016/j.palaeo.2016.10.005. DOI: https://doi.org/10.1016/j.palaeo.2016.10.005
DEL VALLE, H.; CÁCERES, I. (2020). «Los efectos del hervido en la microestructura ósea. Estado de la cuestión y enfoques metodológicos para su caracterización en el registro arqueológico», ArkeoGazte, 10, pp. 261-275.
DUMONT, M. et al. (2011). «Size and size distribution of apatite crystals in sauropod fossil bones», Palaeogeography, Palaeoclimatology, Palaeoecology, 310(1-2), pp. 108-116. https://doi.org/10.1016/j.palaeo.2011.06.021. DOI: https://doi.org/10.1016/j.palaeo.2011.06.021
EFREMOV, J. A. (1940). «Taphonomy: new branch of paleontology», American Geologist, 74, pp. 81-93.
ELLINGHAM, S. T. D.; THOMPSON, T. J. U.; ISLAM, M. (2016). «The Effect of Soft Tissue on Temperature Estimation from Burnt Bone Using Fourier Transform Infrared Spectroscopy», Journal of Forensic Sciences, 61(1), pp. 153-159. https://doi.org/10.1111/1556-4029.12855. DOI: https://doi.org/10.1111/1556-4029.12855
VON ENDT, D. W.; ORTNER, D. J. (1984). «Experimental effects of bone size and temperature on bone diagenesis», Journal of Archaeological Science, 11(3), pp. 247-253. https://doi.org/10.1016/0305-4403(84)90005-0. DOI: https://doi.org/10.1016/0305-4403(84)90005-0
FERNÁNDEZ-JALVO, Y.; Andrews, P (2003). «Experimental effects of water abrasion on bone fragments», Journal of taphonomy, 1(3), pp. 145-161.
FERNÁNDEZ-JALVO, Y.; CÁCERES, I.; MARÍN-MONFORT, M. D. (2013). «Tafonomía», en Garcia-Diez, M. y Zapata, L. (eds.) Métodos y técnicas de análisis y estudio en la arqueología prehistórica. De lo técnico a la reconstrucción de los grupos humanos. Universida, pp. 367-404
FERNÁNDEZ-JALVO, Y.; ANDREWS, P. (2016). Atlas of Taphonomic Identifications. 1001+1 Images of fossil and recent mammal bone modification. Springer. DOI: https://doi.org/10.1007/978-94-017-7432-1_1
FERNÁNDEZ LÓPEZ, R. S. (2000). Temas de Tafonomía. Madrid.
FERNÁNDEZ LÓPEZ, S. R. (2001). «Tafonomía, fosilización y yacimientos de fósiles: Modelos alterenaticos», Enseñanza de Ciencias de la Tierra, 9.2, pp. 116-120.
GABET, E. J.; REICHMAN, O. J.; SEABLOOM, E. W. (2003). «The effects of bioturbation on soil processes and sediment transport», Annual Review of Earth and Planetary Sciences, 31, pp. 249-273. https://doi.org/10.1146/annurev.earth.31.100901.141314. DOI: https://doi.org/10.1146/annurev.earth.31.100901.141314
GARCÍA-VIÑAS, E. et al. (2014). «Diecinueve años de investigación sobre el patrimonio paleobiológico de la Prehistoria Reciente andaluza», pH, 86, pp. 88-100. DOI: https://doi.org/10.33349/2014.0.3505
GARCÍA FORTES, S.; FLOS TRAVIESO, N. (2008). Conservación y restauración de bienes arqueológicos. Sintesis. Madrid.
GRUPE, G. (1995). «Preservation of collagen in bone from dry, sandy soil», Journal of Archaeological Science, 22(2), pp. 193-199. https://doi.org/10.1006/jasc.1995.0021. DOI: https://doi.org/10.1006/jasc.1995.0021
GUADELLI, J.L. (2008). «La gélifraction des restes fauniques. Expérimentation et transfert au fossile». Annales de Paléontologie. 94, pp. 121–165. DOI: https://doi.org/10.1016/j.annpal.2008.05.002
HEDGES, R. E. M. (2002). «Bone diagenesis: An overview of the processes», Archaeometry, 44, pp. 319-328. DOI: https://doi.org/10.1111/1475-4754.00064
HEDGES, R. E. M.; MILLARD, A. R. (1995). «Bones and Groundwater: Towards the Modelling of Diagenetic Processes», Journal of Archaeological Science. Academic Press, 22(2), pp. 155-164. https://doi.org/10.1006/JASC.1995.0017. DOI: https://doi.org/10.1006/jasc.1995.0017
HEDGES, R. E. M.; MILLARD, A. R.; PIKE, A. W. G. (1995) «Measurements and relationships of diagenetic alteration of bone from three archaeological sites», Journal of Archaeological Science, 22(2), pp. 201-209. https://doi.org/10.1006/jasc.1995.0022. DOI: https://doi.org/10.1006/jasc.1995.0022
HUISMAN, H. et al. (2017). «Micromorphological indicators for degradation processes in archaeological bone from temperate European wetland sites», Journal of Archaeological Science. Elsevier Ltd, 85, pp. 13-29. https://doi.org/10.1016/j.jas.2017.06.016. DOI: https://doi.org/10.1016/j.jas.2017.06.016
JANS, M. M. E. et al. (2004). «Characterisation of microbial attack on archaeological bone», Journal of Archaeological Science, 31, pp. 87-95. https://doi.org/10.1016/j.jas.2003.07.007. DOI: https://doi.org/10.1016/j.jas.2003.07.007
KENDALL, C. et al. (2018). «Diagenesis of archaeological bone and tooth», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier, 491, pp. 21-37. https://doi.org/10.1016/j.paleo.2017.11.041. DOI: https://doi.org/10.1016/j.palaeo.2017.11.041
KONTOPOULOS, I. et al. (2019). «Petrous bone diagenesis: a multi-analytical approach», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier, 518, pp. 143-154. https://doi.org/10.1016/j.palaeo.2019.01.005. DOI: https://doi.org/10.1016/j.palaeo.2019.01.005
DE LA BAUME, S. (1990). «Les matériaux organiques», en Berdecou, M. C. (ed.) La conservation en Achéologie Méthodes et practique de la conservation-restauration des vestigues archélogiques. Masson. Paris, pp. 220-270.
LARKIN, N. R.; MAKRIDOU, E. (1999). «Comparing gap-fillers used in conserving sub-fossil material», Geological curators group, 7(2), pp. 81-91.
LEBON, M. et al. (2008). «Characterization of archaeological burnt bones: Contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν 1 ν 3 PO4 domain», Analytical and Bioanalytical Chemistry, 392(7-8), pp. 1479-1488. https://doi.org/10.1007/s00216-008-2469-y. DOI: https://doi.org/10.1007/s00216-008-2469-y
LEBON, M. (2010). «The taphonomy of burned organic residues and combustion features in archaeological contexts», Palethnologie, 2, pp. 145-158.
LEBON, M. et al. (2016). «Rapid quantification of bone collagen content by ATR-FTIR spectroscopy», Radiocarbon, 58(1), pp. 131-145. https://doi.org/10.1017/RDC.2015.11. DOI: https://doi.org/10.1017/RDC.2015.11
LYMAN, R. L. (1994). Vertebrate Taphonomy. Cambdridge University Press. https://doi.org/10.1017/CBO9781139878302. DOI: https://doi.org/10.1017/CBO9781139878302
NICHOLSON, R. A. (1993). «A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology», Journal of Archaeological Science, pp. 411-428. https://doi.org/10.1006/jasc.1993.1025. DOI: https://doi.org/10.1006/jasc.1993.1025
NIELSEN-MARSH, C. M.; HEDGES, R. E. M. (1999). «Bone porosity and the use of mercury intrusion porosimetry in bone diagenesis studies», Archaeometry, 41(1), pp. 165-174. https://doi.org/10.1111/j.1475-4754.1999.tb00858.x. DOI: https://doi.org/10.1111/j.1475-4754.1999.tb00858.x
NIELSEN-MARSH, C M.; HEDGES, R. E. M. (2000). «Patterns of diagenesis in bone I: The effects of site environments», Journal of Archaeological Science, 27(12), pp. 1139-1150. https://doi.org/10.1006/jasc.1999.0537. DOI: https://doi.org/10.1006/jasc.1999.0537
NIELSEN-MARSH, C.M.; HEDGES, R. E. M. (2000). «Patterns of diagenesis in bone II: Effects of acetic acid treatment and the removal of diagenetic CO 32», Journal of Archaeological Science, 27(12), pp. 1151-1159. https://doi.org/10.1006/jasc.1999.0538. DOI: https://doi.org/10.1006/jasc.1999.0538
NIELSEN-MARSH, C. M. et al. (2007). «Bone diagenesis in the European Holocene II: taphonomic and environmental considerations», Journal of Archaeological Science, 34(9), pp. 1523-1531. https://doi.org/10.1016/j.jas.2006.11.012. DOI: https://doi.org/10.1016/j.jas.2006.11.012
PÉREZ, L. et al. (2017). «Hearths and bones: An experimental study to explore temporality in archaeological contexts based on taphonomical changes in burnt bones», Journal of Archaeological Science: Reports. Elsevier Ltd, 11, pp. 287-309. https://doi.org/10.1016/j.jasrep.2016.11.036. DOI: https://doi.org/10.1016/j.jasrep.2016.11.036
PIEPENBRINK, H. (1986). «Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation», Journal of Archaeological Science, 13(5), pp. 417-430. https://doi.org/10.1016/0305-4403(86)90012-9. DOI: https://doi.org/10.1016/0305-4403(86)90012-9
PINEDA, A. et al. (2019). «Tumbling effects on bone surface modifications (BSM): An experimental application on archaeological deposits from the Barranc de la Boella site (Tarragona, Spain)», Journal of Archaeological Science. Elsevier, 102(October 2018), pp. 35-47. https://doi.org/10.1016/j.jas.2018.12.011. DOI: https://doi.org/10.1016/j.jas.2018.12.011
POKINES, J. T.; BAKER, J. E. (2013). «Effects of Burial Environment on Osseus Remains», en Manual of Forensic Taphonomy. CRC Press, pp. 73-114.
REICHE, I., VIGNAUD, C.; MENU, M. (2002). «The crystallinity of ancient bone and dentine: New insights by transmission electron microscopy», Archaeometry, 44(3), pp. 447-459. https://doi.org/ 10.1111/1475-4754.00077. DOI: https://doi.org/10.1111/1475-4754.00077
RHO, J. Y., KUHN-SPEARING, L.; ZIOUPOS, P. (1998). «Mechanical properties and the hierarchical structure of bone», Medical Engineering and Physics, 20(2), pp. 92-102. https://doi.org/10.1016/S1350-4533(98)00007-1. DOI: https://doi.org/10.1016/S1350-4533(98)00007-1
ROBERTS, S. J. et al. (2002). «The taphonomy of cooked bone: characterizing boiling and its physico-chemical effects», Archaeometry, 44(3), pp. 485-494. https://doi.org/10.1111/1475-4754.t01-1-00080. DOI: https://doi.org/10.1111/1475-4754.t01-1-00080
SHIPMAN, P., FOSTER, G. Y SCHOENINGER, M. (1984) «Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage», Journal of Archaeological Science, 11(4), pp. 307-325. https://doi.org/10.1016/0305-4403(84)90013-X. DOI: https://doi.org/10.1016/0305-4403(84)90013-X
SMITH, C. I. et al. (2002). «The strange case of Apigliano: early “fossilization” of medieval bone in southern Italy», Archaeometry, 44(3), pp. 405-415. https://doi.org/10.1111/1475-4754.t01-1-00073. DOI: https://doi.org/10.1111/1475-4754.t01-1-00073
SMITH, C. I. et al. (2007). «Bone diagenesis in the European Holocene I: patterns and mechanisms», Journal of Archaeological Science, 34(9), pp. 1485-1493. https://doi.org/10.1016/j.jas.2006.11.006. DOI: https://doi.org/10.1016/j.jas.2006.11.006
STINER, M. C. et al. (1995). «Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone», Journal of Archaeological Science, 22, pp. 223-237. https://doi.org/10.1006/jasc.1995.0024. DOI: https://doi.org/10.1006/jasc.1995.0024
SUROVELL, T. A.; STINER, M. C. (2001). «Standardizing infra-red measures of bone mineral crystallinity: An experimental approach», Journal of Archaeological Science, 28(6), pp. 633-642. https://doi.org/10.1006/jasc.2000.0633. DOI: https://doi.org/10.1006/jasc.2000.0633
THOMPSON, T. J. U. et al. (2011). «An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V., 299(1-2), pp. 168-174. https://doi.org/10.1016/j.palaeo.2010.10.044. DOI: https://doi.org/10.1016/j.palaeo.2010.10.044
TRUEMAN, C. N.; MARTILL, D. M. (2002). «The long-term survival of bone: the role of bioerosion», Archaeometry, 44(3), pp. 371-382. https://doi.org/10.1111/1475-4754.t01-1-00070. DOI: https://doi.org/10.1111/1475-4754.t01-1-00070
TRUEMAN, C. N. G. et al. (2004). «Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids», Journal of Archaeological Science, 31(6), pp. 721-739. https://doi.org/10.1016/j.jas.2003.11.003. DOI: https://doi.org/10.1016/j.jas.2003.11.003
TURNER-WALKER, G. (2007). «Degradation pathways and conservation strategies for ancient bone from wet anoxic sites», Proceedings of the 10th ICOM Group on Wet Organic Archaeological Materials Conference: Amsterdam 2007, (September 2007), pp. 659-675.
TURNER-WALKER, G.; SYVERSEN, U. (2002). «Quantifying histological changes in archaeological bones using BSE-SEM image analysis», Archaeometry, 44(3), pp. 461-468. https://doi.org/10.1111/1475-4754.t01-1-00078. DOI: https://doi.org/10.1111/1475-4754.t01-1-00078
TURNER-WALKER, G. Y JANS, M. (2008) «Reconstructing taphonomic histories using histological analysis», Palaeogeography, Palaeoclimatology, Palaeoecology, 266, pp. 227-235. https://doi.org/10.1016/j.palaeo.2008.03.024. DOI: https://doi.org/10.1016/j.palaeo.2008.03.024
TUROSS, N. (1989). «Albumin preservation in the Taima-taima mastodon skeleton», Applied Geochemistry, 4(3), pp. 255-259. https://doi.org/10.1016/0883-2927(89)90026-7. DOI: https://doi.org/10.1016/0883-2927(89)90026-7
TUROSS, N. et al. (1989). «Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones», Applied Geochemistry, 4(3), pp. 261-270. https://doi.org/ 10.1016/0883-2927(89)90027-9. DOI: https://doi.org/10.1016/0883-2927(89)90027-9
TÜTKEN, T.; VENNEMANN, T. W. (2011). «Fossil bones and teeth: Preservation or alteration of biogenic compositions?», Palaeogeography, Palaeoclimatology, Palaeoecology, 310(1-2), pp. 1-8. https://doi.org/10.1016/j.palaeo.2011.06.020. DOI: https://doi.org/10.1016/j.palaeo.2011.06.020
VAN DER VALK, T. et al. (2021). «Million-year-old DNA sheds light on the genomic history of mammoths», Nature, 591, pp. 265-269. https://doi.org/10.1038/s41586-021-03224-9. DOI: https://doi.org/10.1038/s41586-021-03224-9
VILLAGRAN, X. S.et al. (2017). «Bone annd other skeletal tissues», en Nicosia, C. y Stoops, G. (eds.) Archaeological soil and sediment micromorphology. Wiley Blac, pp. 11-38.
WALKER, P. L., JOHNSON, J. R. ; LAMBERT, P. M. (1988). «Age and sex biases in the preservation of human skeletal remains», American Journal of Physical Anthropology, 76(2), pp. 183-188. https://doi.org/10.1002/ajpa.1330760206. DOI: https://doi.org/10.1002/ajpa.1330760206
WEINER, S. (2010). Microarchaeology: beyond the Visible Archaeological Record. Cambridge. https://doi.org/10.1017/CBO9780511811210. DOI: https://doi.org/10.1017/CBO9780511811210
WHITE, E. ; HANNUS, L. A. (1983). «Chemical weathering of bone in archaeological soils», Society for American Archaeology, 48(2), pp. 316-322. https://doi.org/10.2307/280453. DOI: https://doi.org/10.2307/280453
WOPENKA, B.; PASTERIS, J. D. (2005). «A mineralogical perspective on the apatite in bone», Materials Science and Engineering C, 25(2), pp. 131-143. https://doi.org/10.1016/j.msec.2005.01.008. DOI: https://doi.org/10.1016/j.msec.2005.01.008
Downloads
Published
How to Cite
Issue
Section
License
- Copyright and intellectual property belongs to author. Author guarantees editing and publishing rights to Ge-Conservación Journal, under a Creative Commons Attribution License. This license allows others to share the work with authorship and the original source of publication acknowledgement.
- Articles can be used for scientific and educational purposes but never for commercial use, being sanctioned by law.
- The whole content of the article is author’s responsibility.
- Ge-Conservación Journal and authors may establish additional agreements for non-exclusive distribution of the work version published at the Journal (for example, on institutional repositories or on a book) with acknowledgment of the original publication on this Journal.
- Author is allowed and encouraged to disseminate his works electronically (for example, on institutional repositories or on its own website) after being published on Ge-Conservación Journal. This will contribute for fruitful interchanges as also for wider and earlier citations of the author’s works.
- Author’s personal data will only be used for the Journal purposes and will not be given to others.



